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Neural Temporal Dynamics of Continuous Degraded Speech Processing

• We have shown recently (Hauswald et al., 2020) for
continuously vocoded speech that alpha power
decreases with increased degrading, whereas theta
coherence increases as long as the speech is
comprehensible. However, the applied measures
provide a static measure of neural activities.

• In the present study, we applied temporal response
functions (TRFs) in order to derive the spatio-temporal
sequence of neural activities elicited by changes in the
signal envelope.

• Ｗe also reconstructed the speech envelopes to explore
how vocoded speech modulates speech tracking with
regularized linear regression approach.
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Results

Methods

• There were 24 healthy adults participating in an MEG experiment, and 17 of 
them also participated in a behavior experiment.

• In both tasks, there were six levels of vocoding conditions (original, 7-, 5-, 3-,
2-, and 1-channel).

• Participants were required to indicate which word is the last noun they heard in 
the last sentence.
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2.2.2 | MEG data

Degradation-related effects
To investigate the effects of reducing the acoustic informa-
tion, we ran a cluster-corrected repeated-measures ANOVA 
for the speech tracking (1–7 Hz coherence; see spectral dis-
tribution in Figure 2a) of the 3 conditions (original, 7-chan 
and 3-chan). An effect of degradation between 1 and 7 Hz 
(p  =  .0009) was yielded with maxima in bilateral middle 
temporal and left frontal regions and right thalamus and 
insula (Figure  2b, left). In these areas, the original audio 
stimuli lead to the weakest speech tracking, while the stimuli 
with the medium degradation (7-chan) elicited the strongest 
speech tracking (Figure  2b, right). Listening to the origi-
nal audio files elicited lower tracking than listening to the 

7-chan (t(27)  =  −7.798, pfdr  =  6.58e-8) or 3-chan version 
(t(27) = −5.593, pfdr = 9.33e-6). The two vocoded stimulus 
classes did not differ significantly (t(27) = 1.139, pfdr = .264). 
The linear mixed models revealed a significant linear pat-
tern across conditions (χ2 = 26.868, p = 2.179e-07). Adding 
a quadratic term to the model benefitted the data prediction 
(model comparison: χ2 = 19.998, p = 7.751e-06; gray curve 
in Figure 2b right).

The same statistical analysis applied to alpha power 
(8–12  Hz, spectral distribution in Figure  3a) over orig-
inal, 7-chan and 3-chan revealed an effect of degrada-
tion (p  =  .0009, Figure  3b), with alpha power during 
unaltered stimuli being higher during than 7-chan voc-
oding (t(27)  =  3.095, pfdr  =  .0045) and 3-chan vocod-
ing (t(27)  =  4.09, pfdr  =  .001). Compared with 7-chan 

F I G U R E  3  (a) Frequency spectrum of the power for the three conditions averaged across all voxels. (b) Left: source localizations of 
degradation effects on alpha power (8–12 Hz) across three conditions (original, 7-chan and 3-chan) with maxima in left angular gyrus and inferior 
parietal lobe, left frontal and inferior temporal regions. Right: individual 8–12 Hz power values of the three conditions extracted at voxels showing 
a significant effect contrasted with each other. The gray curve represents the predicted tracking values by the linear model. (c) Frequency spectrum 
of the power for the six conditions averaged across all voxels. (d) Left: source localizations of degradation effects on alpha power (8–12 Hz) across 
six conditions (original, 7-chan, 5-chan, 3-chan, 2-chan and 1-chan) with maxima in left angular gyrus and inferior parietal lobe. Right: individual 
8–12 Hz power values of the three conditions extracted at voxels showing a significant effect contrasted with each other. The gray curve represents 
the predicted alpha power values by the model that combines linear and quadratic terms. Bars represent 95% confidence intervals, pfdr < .05*, 
pfdr < .01**, pfdr < .01***
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actual (grand) average results in the relevant bar graphs (gray 
curves).

2.2 | Results

2.2.1 | Behavioral results

The mean hit rate for original stimuli was 99% (SD: 3.43%) for 
the original sound files, 92.5% (SD: 10.21%) for 7-chan vocoded 
stimuli and 69.44% (SD: 18.75%) for 3-chan vocoded stimuli. A 
one-way ANOVA across the three conditions revealed a main 
effect (F(72) = 37.14, p = 8.28e-12).Comparing the different 

vocoding levels with each other showed higher hit rates for non-
vocoded stimuli than for 7-chan (t(24) = 3.376, pfdr = .0025) or 
3-chan vocoded stimuli (t(24) = 7.632, pfdr = 1.437e-7). 7-chan 
had higher hit rates than 3-chan vocoded stimuli (t(24) = 6.2354, 
pfdr = 2.8733e-6). All conditions also showed significant above-
chance (50%) hit rates (Figure  1c): for nonvocoded stimuli, 
t(24) = 70.787, pfdr = 1.3341e-28, for 7-chan, t(24) = 20.821, 
pfdr  =  2.1531e-16, and for 3-chan vocoded, t(24)  =  5.333, 
pfdr = 2.1494e-5. The linear mixed models revealed significant 
linear decrease across conditions (χ2 = 72.003, p < 2.2e-16). 
Adding a quadratic term to the model benefitted the data pre-
diction (model comparison: χ2  =  7.8982, p  <  .004949; gray 
curve in Figure 1c left).

F I G U R E  2  (a) Frequency spectrum of the speech tracking (coherence) for the three conditions averaged across all voxels. (b) Left: source 
localizations of degradation effects on speech tracking (1–7 Hz) during acoustic stimulation across three conditions (original, 7-chan and 3-chan) in 
bilateral temporal and left frontal regions. Right: individual speech tracking values of the three conditions extracted at voxels showing a significant 
effect contrasted with each other. The gray curve represents the predicted tracking values by the model combining linear and quadratic terms. (c) 
Frequency spectrum of the speech tracking for the six conditions averaged across all voxels. (d) Left: source localizations of degradation effects on 
speech tracking (1–7 Hz) during acoustic stimulation across six conditions (original, 7-chan, 5-chan, 3-chan, 2-chan 1-chan) in bilateral temporal 
and left frontal regions. Right: individual speech tracking values of the six conditions extracted at voxels showing a significant effect contrasted 
with each other. The gray curve represents the predicted tracking values by the model that combines linear and quadratic terms. Bars represent 95% 
confidence intervals, pfdr < .05*, pfdr < .01**, pfdr < .001***

• The TRF analysis showed that the vocoded speech differentially modulates the
neural response at three distinct time windows. The early effect was observed
with vocoding massively increasing the peak response. The second declined
with the reduction of intelligibility. The third showed the maximum response in
those still comprehensible degraded speech.

• The modulation on the TRF early and late response both showed in a
nonlinear fashion which support what we found in the theta coherence result.

50-105 ms 120-275 ms 300-380 ms

Linear Mixed Effect Model

response ~ (vocoding level)+ (1 | subject)
vs.

response ~ (vocoding level) + (vocoding level)^2 + (1 | subject)   

***p < 0.001, **p < 0.01, *p < 0.05
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Crosse et al. The mTRF Toolbox

FIGURE 1 | Schematic of the forward and backward modeling approaches implemented by mTRF Toolbox. Stimulus reconstruction (i.e., backward

modeling) can be used to decode specific stimulus features from recorded neural response data in order to estimate how accurately this information was encoded in

the brain. Temporal response function estimation (i.e., forward modeling) can be used in a similar manner to predict the neural response to a novel stimulus, but also

allows for detailed examination of how the stimulus features were encoded in the brain and interpretation of the underlying neural generators.

EXAMPLES

The examples presented in this section use data from a published
study that measured EEG responses of human subjects to natural,
continuous speech (Di Liberto et al., 2015). The subject listened
to an audiobook version of a classic work of fiction read by a
male speaker in American English. The audio was presented in
28 segments (each ∼155 s in duration), of which a subset of
five are used in the examples in this chapter. EEG data were
recorded using a 128-channel ActiveTwo system (BioSemi) and
digitized at a rate of 512Hz. Offline, the data were digitally filtered
between 1 and 15Hz, downsampled to a rate of 128Hz and re-
referenced to the left and right mastoid channels. Only 32 of the
128 channels recorded are included in the analysis, but crucially,
are distributed evenly across the head (Mirkovic et al., 2015).
Further details can be found in the original study (Di Liberto
et al., 2015).

This section details several examples that demonstrate how
the mTRF Toolbox can be used to relate neural data to sensory
stimuli in a variety of different ways. These include:

1. Univariate TRF estimation
2. Optimization and prediction
3. Multivariate TRF analysis
4. Stimulus reconstruction

5. Multimodal TRF estimation
6. TRF vs. cross-correlation

While the examples all relate to EEG data collected during speech
stimuli, as stated earlier, these approaches can all be used with
other types of sensory stimuli.

Univariate TRF estimation
The aim here is to estimate the temporal response function that
maps a univariate representation of the speech envelope onto the
EEG signal recorded at each channel. The broadband envelope of
the speech signal (Figure 2A) was calculated using:

xa(t) = x(t)+ jx̂(t), (11)

where xa(t) is the complex analytic signal obtained by the
sum of the original speech x(t) and its Hilbert transform x̂(t).
The envelope was defined as the absolute value of xa(t). This
was then downsampled to the same sampling rate as the EEG
data, after applying a zero-phase shift anti-aliasing filter. TRFs
were calculated between lags of −150 and 450 ms, allowing
an additional 50 ms at either end for regression artifacts. An
estimate was computed separately for each of the five trials and
then averaged. The ridge parameter was empirically chosen to
maintain component amplitude (Lalor et al., 2006).
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