

PARIS LODRON SALZBURG

4. Institute of Bioengineering, Center for Neuroprosthetics, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland; 5. Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland; a. Sarang Dalal and Nathan Weisz are joint senior authors on this work.

1. Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria; 2. Department of Psychology, University of Salzburg, Salzburg, Germany; 6. RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Sem Sælands vei 2, Oslo, Norway; 8. Department of Psychology, Universität Konstanz, Konstanz, Germany; 8. Department of Psychology, Universität Konstanz, Konstanz, Germany; 8. Department of Psychology, Universität Konstanz, Germany; 8. Department of Musicology, University of Oslo, Sem Sælands vei 2, Oslo, Norway; 8. Department of Psychology, Universität Konstanz, Germany; 8. Department of Psychology, Universität Konstanz, Germany; 7. Department of Musicology, University of Oslo, Sem Sælands vei 2, Oslo, Norway; 8. Department of Psychology, Universität Konstanz, Germany; 9. Department of Otorhinolaryngology, University of Zurich, University of Zurich, University of Lübeck, Ratzeburger Allee 160, Lübeck, Germany; 11. Center for Brain, Behavior, and Metabolism, University of Lübeck, Ratzeburger Allee 160, Lübeck, Germany; 11. Center for Brain, Behavior, and Metabolism, University of Lübeck, Ratzeburger Allee 160, Lübeck, Germany; 11. Center for Brain, Behavior, and Metabolism, University of Lübeck, Ratzeburger Allee 160, Lübeck, Germany; 11. Center for Brain, Behavior, and Metabolism, University of Lübeck, Ratzeburger Allee 160, Lübeck, Germany; 11. Center for Brain, Behavior, and Metabolism, University of Lübeck, Ratzeburger Allee 160, Lübeck, Germany; 11. Center for Brain, Behavior, and Metabolism, University of Lübeck, Ratzeburger Allee 160, Lübeck, Germany; 11. Center for Brain, Behavior, and Metabolism, University of Lübeck, Ratzeburger Allee 160, Lübeck, Germany; 11. Center for Brain, Behavior, and Metabolism, University of Lübeck, Ratzeburger Allee 160, Lübeck, Germany; 11. Center for Brain, Behavior, and Metabolism, University of Lübeck, Ratzeburger Allee 160, Lübeck, Germany; 11. Center for Brain, Behavior, and Metabolism, University of Lübeck, Ratzeburger Allee 160, Lübeck, Germany; 11. Center for Brain, Behavior, and Metabolism, University of Lübeck, Ratzeburger Allee 160, Lübeck, Germany; 11. Center for Brain, Behavior, and Metabolism, University of Lübeck, Ratzeburger Allee 160, Lübeck, Germany; 11. Center for Brain, Behavior, and Metabolism, University of Lübeck, Germany; 11. Center for Brain, Behavior, and Metabolism, University of Lübeck, Ratzeburger Allee 160, Lübeck, Germany; 11. Center for Brain, Behavior, and Metabolism, University of Lübeck, Germany; 11. Center for Brain, Behavior, and Metabolism, University of Lübeck, Germany; 12. Faculty of Medicine, University of Zurich, Zurich, Switzerland; 13. Evaluative Clinical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada; 14. Otolaryngology-Head and Neck Surgery, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; 15. Faculty of Medicine, Otolaryngology-Head and Neck Surgery, University, Aarhus, Denmark; 17. Neuroscience Institute, Christian Doppler University Hospital, Paracelsus Medical University, Salzburg, Austria;

Introduction

- Studies have shown that individuals with a cochlear implant (CI) for treating single-sided deafness have experienced improved speech perception in noise.
- However, it is not clear how single-sided CI users' speech perception improves and how neural speech representation of speech intelligibility changes over time.
- Here, we applied representation similarity analysis (RSA) to depict how neural representation of degraded nouns changes over time.

• Participant

- 10 single-sided cochlear implant users (5 right-sided + 5 left-sided) • 4 female, mean age 46.9 (27-63)
- 10 age-and-sex matched controls • 4 female, mean age 48.2 (29-61)
- Stimuli
- 216 standard German nouns presented monaurally to each ear
 - 3 levels of temporal smoothing x 3 levels of spectral degradation
- EEG measurement
 - 128 channel EEG (ANT-Neuro system)
 - 1 session for healthy controls
 - 4 sessions for CI users
 - Pre-op (only healthy ear) & 3 Post-op (3, 6 & 12 months)

CI Sub ID	Side of Deafness	(
CI1	L	
CI2	R	
CI3	L	
CI4	R	
CI5	R	
CI6	L	
CI7	L	
CI8	L	
CI9	R	
CI10	R	

A longitudinal EEG study

Sarang Dalal^{16,a}, Nathan Weisz^{1,2,17,a}

